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Abstract

In some credit portfolios the number of observed defaults is always very limited. This is particularly
evident in the Loss Given Default (LGD) estimation based on the new definition of default (the new
definition of default was introduced in European banks in recent years) where only a small sample of
empirical data is observed. The basic proposed LGD model is based on splitting recoveries into two
classes of recoveries: value close to 0 or close to 1. This paper addresses also the problem with unresolved
cases using the Bayesian approach, which assumes a distribution of further recoveries for unresolved
cases. The Bayesian approach is considered with a combination of two binary models. The modelling
approach for LGD is illustrated on real data for a long time period for mortgage loans. The proposed
methodology takes into account the specificity of LGD data for both bimodal LGD distribution and
uncertainty about unresolved cases, which lead to reduce a model bias.
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1. Introduction and background

Small samples in the LGD! estimation are always a challenge for researchers. In some portfolios like
mortgages loan portfolios, the number of observed defaults is always very limited. In such a situation,
all statistical models based on large samples will not work properly. The estimates will always be
biased due to small sample properties. This is particularly evident in the LGD estimation based on the
new definition of default (NDoD) where only a small sample of empirical data is observed. It is worth
mentioning that the NDoD introduced the relative and the absolute thresholds for the purposes of
days past due (DPD) counting. Other less important changes introduced by the NDoD are listed in the
EBA GL (Guidelines on the application of the definition of default 2013).2 The second approach in LGD
modelling is to adequately account for the censored, unresolved exposures in the portfolio. Unresolved
exposures are the exposures related to unfinished recovery processes at the moment of data generation.
On the other hand, resolved cases are the exposures related to completed recovery processes at the
moment of data generation for which all recoveries are known.

This paper proposes a modelling methodology to solve these two fundamental issues.

The auxiliary LGD model presented in this paper is based on splitting recoveries into two classes
of recoveries: close to 0 or close to 1. This general observation of LGD distributions leads to the
construction of an LGD model with the combination of two binary models. The second challenge
when building the LGD model is to use unresolved cases in the estimation process. We address this
problem using the Bayesian approach, which assumes a distribution of further recoveries for unresolved
cases. The Bayesian approach is being considered with the LGD estimation for closed cases with
a combination of two binary models.

The modelling approach for the LGD parameter is illustrated on real data for a long time period
for mortgage loans. The proposed methodology takes into account the specificity of LGD data for both
bimodal LGD distribution and uncertainty about unresolved cases to reduce a model bias.

The structure of the paper is the following. First, we provide a review of the existing literature
both on the subject of LGD estimation, as well as literature discussing the Bayesian approach for
LGD estimation. The second section discusses the justification of the choice of modelling approach,
comparing the proposed approach with the classical one. The third section contains assumptions of the
Bayesian approach for LGD modelling. The fourth section provides a data description and preliminary
results of the two binary models. The final, fifth section, provides the main model estimation results.
Finally, the conclusions of our results and some suggestions for further research are presented.

It is worth mentioning several paragraphs in the European Banking Authority (EBA) Guidelines on
PD estimation, LGD estimation and the treatment of defaulted exposures? related to LGD modelling.
Some of them are more important as they relate to unresolved cases, which is the focal point of the
model covered by the proposed methodology.

1 LGD is defined as a fraction of economic loss in the exposure of default (EAD).

2 Guidelines on the application of the definition of default under Article 178 of Regulation (EU) No. 75/2013, https://
www.eba.europa.eu/sites/default/documents/files/documents/10180/1597103/004d3356-a9dc-49d1-aab1-3591f4d42cbb/
Final%20Report%200n%20Guidelines%20o0n%20default%20definition%20%28EBA-GL-2016-07%29.pdf Pretry=1.

3 Guidelines on PD estimation, LGD estimation and the treatment of defaulted exposures (EBA/GL/2017/16), Basel
Committee on Banking Supervision, https://eba.europa.eu/documents/10180/2033363/Guidelines+on+PD+and+LGD+
estimation+%28EBA-GL-2017-16%29.pdf.
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= “However, to obtain a realistic value of long-run average LGD, the incomplete recovery processes
should be included with future recoveries that are expected to be realized. The value of future
recoveries is not an objective, observed measure but has to be estimated based on the recoveries
factually observed on those cases that are already closed. As a result, the ‘long-run average LGD’
will also be a measure that is not fully objective, as it contains components that are estimated.”

*  “Institutions should obtain the long-run average LGD by adjusting the observed average LGD
taking into account the information related to processes that were not closed (‘incomplete recovery
processes’) and where the time from the moment of default until the moment of estimation is
shorter than the maximum period of the recovery process specified for this type of exposures.”

= “Institutions should analyse also other potential risk drivers that might become relevant after the
date of default, including in particular the expected length of the recovery process and the status
of the recovery process. Institutions should use the values of risk drivers as well as the values of
collateral adequate to the reference dates specified in accordance with paragraphs 171 to 174.”
The above paragraphs say that all the expected recoveries in the future should be taken into

account when building the LGD model and that the proposed risk drivers should at least take

into account:

- the expected length of the recovery process,

- the status of the recovery process.

The regulator also mentioned that the LGD adjustment should be done by including the
information from incomplete processes. Our approach is in line with the requirement of taking into
account the time in the default, which is correlated with the expected length of the recovery process
but the adjustment of the LGD is changed to building only one model including unresolved cases
at the same level in the modelling process as resolved cases.

There are many formulas and different approaches for LGD modelling in the literature. The best
known were listed in Table 1. Many of them are based on Vasicek distribution or a similar approach.

Considering the classical approach for LGD modelling we have first of all averages computed from
homogenous groups (Izzi, Oricchio, Vitale 2012), next go linear regression (Anolli, Beccalli, Giordani
2013; Loterman et al. 2012) or beta regression (Huang, Oosterlee 2011). This classical approach is of
course preferred by authorities because they are clear and understandable for stakeholders. Recently
more and more often new more advanced approaches including non-parametric are preferred by
researchers as they are giving more precise and promising results. Unfortunately those “black-
-box” methods are not preferred by regulatory bodies. Quite innovative and interesting applications
include decision trees (Belotti, Crook 2007), neural networks (Brown 2012) and Markov chains (Luo,
Shevchenko 2013), as well as scoring-based methods (Van Berkel, Siddigi 2012) and two-stage models
(Brown 2012; Yao, Crook, Andreeva 2017; Papouskova, Hajek 2019).

The problem with unresolved cases has been discussed in the literature by Dermine and Neto
de Carvalho (2006), Bastos (2010), and also Rapisarda and Echeverry (2013). Those papers present
the application of both completed and unresolved cases to estimate recovery rate and exposure-
-weighted recovery rate curves. Additionally the exposure-weighted Kaplan-Meier estimator (Rapisarda,
Echeverry 2013) has been used and modified to a default-weighted estimator. The most typical
approach to include incomplete cases in modelling is treating those cases as complete (Baesens, Roesch,
Scheule 2016). This approach may lead to significantly different estimates of real LGD values. Also the
relationship between recovery rates and economic cycles has been explored by extrapolating recoveries
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for the final LGD estimation for unresolved cases (Brumma, Urlichs, Schmidt 2014). For any method,
under Basel IV, discussion of the assumptions regarding the treatment of unresolved cases should be
also provided (Nielsen, Roth 2017). The need to recognize the impact of unresolved cases is clear from
research that shows the potentially long time period before full recoveries are achieved. Some results
based on different samples and portfolios shows that it may take up to four years from default to full
recovery (Kosak, Poljsak 2010; Hurt, Felsovaly 1998).

Another approach for LGD estimation is a market-based LGD approach. For academics and
researchers, the data are relatively accessible for different financial instruments. However, internal
bank modelling are usually based on realized LGD, known as workout LGD, using historical recoveries
and workout data. This is also the case of this paper. Implied LGD has been examined by some
researchers using data from different countries and markets like BBB rated US corporate bonds (Bakshi,
Madan, Zhang 2001) as well as for Argentinian government bonds (Andritzky 2005). Unfortunately
results for market-derived LGD for corporate bonds characterize high estimation errors and low
precision (Christensen, Henrik 2006; Pan, Singleton 2005).

Literature that studies the implications of small samples for loss (LGD) estimation is rather not very
popular. Potential solutions proposed to overcome the small sample issue include the use of external
databases, different time period criteria, or extrapolating future recoveries. One of the solutions was
proposed by Chalupka and Kopecsni (2009), who used methods based on realized losses that can be
used to extend small samples. They applied this solution for the estimation of LGD for the small and
medium enterprise (SME) sector of the Czech Republic. The methods proposed include limiting the
recovery time period or assuming a full recovery based on a proportion of the exposure. Zieba (2017)
provides an overview of methods of increasing sample size. His work is based on using real LGD
data, and this analysis supports the use of extrapolation of recovery rates as the most efficient way
of increasing sample size for improving precision of LGD estimation.

Examples of Loss Given Default (LGD) estimations using a Bayesian approach are also very
limited in the literature. One of the examples is LGD estimation for unsecured retail loans, because
those estimations are often found difficult to model. The typical approach is two-step approach:
there are two separate regression models that are estimated independently. However this approach
can be problematic because it must be combined together to make the final predictions about LGD.
In such a situation, LGD can be modelled using Bayesian methods (Bijak, Thomas 2015). The advantage
in this situation is that only a single hierarchical model can be estimated instead of two separate
models, making this a more appropriate approach. The authors of the mentioned paper used Bayesian
methods, and the frequentist approach as a comparison, and applied them to the data on personal loans
provided by one of the large UK banks. The posterior estimates of means of parameters that have been
calculated by authors using the Bayesian approach appear to be very similar to the ones calculated in
the frequentist approach. The main advantage of using the Bayesian model was an individual predictive
distribution of LGD for each loan. Applications of such distributions also include so-called down-turn
LGD calculations and the so-called stressed LGD calculations. Example of such application can be
found in paper Jobst, Kellner and Rdsch (2020). Authors developed and apply a Bayesian model for
the loss rates given defaults (LGDs) of European sovereigns. Their approach comprises parameter
risk and generates LGD forecasts under both regular and downturn conditions. With sovereign-
-specific rating information, they found that average LGD estimates vary between 0.46 and 0.64, while
downturn estimates are between 0.50 and 0.86.
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The biggest advantage of the approach proposed in this paper is the utilization of a Bayesian
approach to avoid the need for aggregation of two different models results. We propose the theoretical
and methodological elaboration and application on real banking data.

2. The choice of the modelling approach

There are two main ideas in the modelling proposed in this paper. The first one is to build two binary

models predicting LGDs of 0 and 1, the second one is the incorporation of a Bayesian approach into the

modelling process, especially for the unresolved cases. The rationale for these two choices is as follows:

= LGD distribution is bimodal with modes close to 0 and close to 1. Therefore it is more efficient to
build estimation procedure on two binary models than on a continuous one. This approach was
presented in a paper by Ptak-Chmielewska and Kopciuszewski (2021). Why two binary models but
not just one that can be used to predict both states of LGD? Theoretically the score from the one
binary model could be used to classify 0, 1 and other LGD values. These two binary models differ
in their explanatory variables. The obligor risk profile associated with the prediction of LGD equal
to 0 cannot be used to predict LGD of 1 and vice versa with good quality. This observation is also
valid for the data contained in this paper. The conclusion is that the combination of the two binary
models gives a more effective LGD forecast across the entire LGD range. In addition, modelling
of continuous variables based on linear or nonlinear regressions is less efficient than modelling
binary variables, but these methods cannot be compared directly.

= The LGD model has to be built taking into account all exposures, including unresolved cases,
which is additionally emphasized by EBA regulations. Building the model in a more classic way
where all resolved cases are the population for model building, but unresolved cases are used for
the final adjustment of the model, can lead to a bias of the model. The most desired method is to
include all cases in one model formula, keeping in mind that unresolved cases are censored cases in
the model. Additionally, future recoveries as well as historically observed recoveries can be treated
as random variables with a distribution. According to this approach, unknown parameters of this
distribution can be estimated but also prior information can be incorporated into the structure
of the model. The open questions are: Which distribution to choose for LGD for unresolved cases?
How to combine a classic approach with the Bayesian methodology?
Figure 1 gives a view of a possible combination of the classic and Bayesian approaches.
The comparison between the classic and currently proposed approaches as well as their pros and

cons are summarized in Tables 2 and 3.

2.1. Assumptions for the Bayesian LGD estimation

The basic assumption for this LGD model is that overall LGD for the both resolved and unresolved cases
is a random variable. Assuming a distribution for the observed LGD allows to incorporate additional
knowledge contained in the distribution parameters to the model. As total recoveries for resolved cases
are known but partially are known for the unresolved ones, the final formula have to be different for
them. This is a different approach compared to the classic one, where the resolved cases are used to
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derive the model formula but the unresolved ones are used to adjust the model developed in the first
modelling step. The more important the currently proposed approach is, the larger the unresolved
population is observed. The current purpose in the paper is to present this new approach and test it
with real data. It is also clear that the direct inclusion of the entire population in the modelling process
makes the final model less biased. The bias of this model is related not to splitting the population into
two different segments and treating the unresolved cases differently, but to the lack of total knowledge
of recoveries for them. The formula presented below can be extended to more sophisticated models,
which is allowed by Bayesian methodology. Currently the proposed formula is the first attempt to apply
it to LGD modelling and check the results and the possibility of using it to solve other LGD issues.
In general, the structure of the model allows to take into account many other pieces information,
such as external knowledge of the modelled variable, relations between coefficients, distributions
for all parameters included in the model and the extension the model structure towards any needs.
The uniqueness of the presented approach lies in applying semi-Bayesian methodology and taking into
account both the resolved and unresolved cases in one model formula.

Let us introduce the following basic markings but notice that when referring to the end of
the recovery process, this also means an observation of no more than the maximum workout period.

LGD,, ; is the observed LGD up to the end of the recovery process for resolved cases and
up to the censored time for unresolved cases, assigned to the i-th loan in the data.

LGD,,.; ; is the overall LGD up to the end of the recovery process for both the resolved cases and
unresolved cases, assigned to the i-th loan in the data.

LGD,, ;is assumed to be a random variable normally distributed, assigned to the ith loan in the data.

LGD

obs, i

~ N(LGD

‘mean,i >

LGD,) 1)

where the mean and the standard deviation are equal to the LGD,,, . and LGD respectively.

a

From the Bayesian point of view the above formula for LGD with a normal distribution can be
treated as likelihood, i.e. a conditional distribution of the LGD observed under the parameters used
in the model. The prior distribution for all parameters introduced in this section, i.e. a,, a,, a,, b
is assumed to be non-informative.

As defined at the beginning, LGD is a fraction of economic loss in the EAD. Exceptionally, it may be
lower than 0 and greater than 1 but the main range of the parameter is the [0, 1] interval. Nevertheless,
the assumed normal distribution for LGD given a very small standard deviation covers the above
interval with sufficiently high probability, which is acceptable from a practical point of view and
sometimes used in Bayesian models. Formally, a normal density should be limited to a finite interval,
but without loss of generality we can omit this assumption.

LGD 4y ; is the predicted additional part of the future loss (it is not the LGD estimator) for
unresolved cases, assigned to the i-th loan in the data.

Suppose that the overall LGD can be predicted from the normal linear model based on the two
logistic models developed in the previous section as follows:

LGD,,,; = ay+a, - LGD, ,+a,* LGD, /+ & )

total,i

and the expected mean E (LGD

total i

) equals the above linear formula with three parameters.
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Suppose that LGD,, g can be predicted from the normal linear model based on the basic
information on the time (¢) spent in the default state, which is recommended by regulations:

LGD,,; =bt+¢ ©)
where ¢, is the time (in days) spent in default up till the censored time moment, assigned to the i-th
loan in the data.

Then the above three random variables can be combined into one formula:

LGD

obs,i

= LGD

total, i

+ LGD,,,; @
where LGD,, i equals 0 for resolved cases.

Next, the mean and the standard deviation for the observed LGD of the i-th facility are defined
separately for the resolved and unresolved cases as follows:

= Resolved cases

LGD,,,, = E(LGD,

total,

) =a,+a,-LGD, + a, LGD, ®)

mean,i

LGD _ is a single parameter to estimate not involved in any formula dependent on other variables.
*  Unresolved cases

LGDmeun,i: E(LGDtotal,i) + E(LGDudd,i) = aO + al ‘LGDO,I'_'_ a2 ‘LGDl,i_'_ b : ti (6)
On the other hand, from the above formulas, the expected value of total LGD can be calculated
conditionally given the observed part of LGD as follows:

obs, i mean, i

E(LGD,,,.)=E(LGD,, ) - E(LGD,,,) = LGD,,,,~ E(LGD,.,) )
Therefore, this formula can be also applied to predict the total LGD for unresolved cases given

the observed part of the LGD up to time ¢ as follows:

= LGD,,,,—b- 1, ®)

mean,i i

E(LGD

total, i )

It is the expected value of the observed LGD equal to the prediction of the total LGD adjusted
for the expected prediction for the future recoveries.

Ultimately, the use of the above formulas based on a linear relationship and normal model requires
the LGD winsorization. In general LGD can be lower than 0 in very exceptional cases and strongly
justified by business rules. Values greater than 1 are related to the collection process with no recoveries
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and increased costs. There were no LGD outliers in the development data, but this winsorization step
should be kept for all other data for which the LGD formula is used. Hence the final estimator for
the total LGD for performing cases is:

LGD,,,,,= max(0,min(1, a, + a,-LGD ;+a," LGD, ,)) ©)

mean,i

and the final estimator for the total LGD for 10 unresolved cases is:

LGD

mean,i

= max(0,min(1, a,+ a,- LGD, ,+a," LGD, ;+b-1,)) (10)

2.2. The data and two binary models for LGD prediction

The data used for the modelling process comes from the years 2008 to 2018. It includes 1867
observations, of which 314 are unresolved, and 400 explanatory variables. All unique loans for
the customer are assigned to different reporting dates from the abovementioned period of time.
The main assumption for the construction of the sample is that the reporting date is randomly selected for
the loan from the 15 to the 12th month before entering to the default state. All explanatory variables
are current as of the selected reporting date. The target variables of the two binary models are based
on the realized economic loss of the loan.

It should be also added that the data was cleaned before being used for the modelling purpose.
The trends over time of the target mean variables? LGD,; =0 and LGD, =1 are shown in Table 4 and
Figures 2 and 3.

The changing trend of the share of LGD equal to zero or one should not be interpreted as a change
in the population pattern, because it is biased with the shorter observation window for recent years.
On the other hand, it can be seen that the share of LGD, = 1 in the population is stable over time
(excluding recent years with a small sample). The variables admitted for the modelling process were
pre-selected initially by business experts and filtered to those with the best properties according to
the stability Population Stability Index (PSI) and Gini measures. While building logistic regression,
the stepwise method was used for the later selection and applied along with the modeler evaluation.
This additional assessment was focused mainly on checking the good properties of the model such as
the same sign at the variable as in the univariate analysis, not so strong correlation between variables
and the significance tests for model parameters.

The general formula for the both models is:

1
& ’
1+exp [—(/J)é +2j=1 /3)11 'xil,j) ]

P'(LGD,=1)= 1e{0,1}

11)

P'(LGD, #1)=1-P'(LGD, =1)

4 Observation is the unique loan of the customer, in the case of several products per customer, a random one is selected
to the sample.

5 LGD s a continuous variable from interval [0-1] with bimodal distribution. Two values, zero and one, are its modes with
positive probability.
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where:
/)7l_l - the [/-th model parameters, j = 0...., k,,
x! T the /th model variables, j = 1...., k, for the i-th loan.

Both the models predicting LGD,= 0 and LGD, =1 separately were built on separate populations
and probabilities of the opposite events for these two models are defined above. The main reason for
building separate models was to observe different risk profiles determined by different risk drivers used
to predict the event of LGD,= 0 and the event of LGD, = 1.

Tables 5-10 show both the structure and quality of the developed models.

Summarizing the results presented in above mentioned tables:
= The quality of these two models is almost the same.
= Risk profile of the exposures that are predicted to be 0 is based mainly on behavioural variables:

—initial LTV,
- refinancing flag,
— limit breach flag,
- number of employment months,
— LTV dynamics,
- 3 months savings,
— past due amount dynamics (3 months to 6 months).
= The most significant variables in the model LGD =1 are:
— industry,
- LTV current.
*  The common part of the models is LTV, but in the first model initial LTV is more predictive and
in the second one, LTV current.

3. The main model results

Both binary LGD models and the final Bayesian model were built using SAS. The nlmixed procedure was
used to build the final Bayesian LGD model. All dependencies and formulas described in the previous
section were incorporated in this SAS procedure. It is worth mentioning that the Monte Carlo calculations
performed in Bayesian modelling depend on the initial values of the algorithm, but changing them gave
the same results, hence the conclusion is that the algorithm is stable on the data we used in Bayesian
modelling. In Bayesian modelling final results are posterior estimators. Table 11 presents all of them.
All parameters are statistically significant and the signs of the coefficients are intuitive.

An alternative formula for the LGD estimation was tested using an additional variable such as the
amount of recoveries collected before the end of the observed process (up till time 7). This later variable
turned out to be insignificant, therefore the additional part of loss was defined only on the basis
of the variable .

The final LGD estimator predicting the total LGD; for the i-th loan can be defined as follows:

LGD

mean,i

= max(0,min(1,0.2751-0.5594 - LGD, ,+ 0.5980 -LGD, ) (12)

and it can be used for performing cases.
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Analysing the LGD prediction on the data used for modelling, the maximum and the minimum
values of LGD are as follows: 0.5980 and -0.2843. Therefore winsorizing on the development data is
needed only to the lower LGD value, but on the other hand it can indicate the symptoms of rising
costs with no recoveries. Therefore the decision of the final winsorization should be made on the basis
of the knowledge of the recovery process and confirmation that LGD greater than 1 are possible.

The additional part of loss for unresolved cases is defined as follows:

LGD,, = 0.00031- ¢, (13)
From the formula it results that the total LGD for in-default unresolved cases can be calculated as:

E(LGD,,,,) = max(0,min(1, LGD,,, ,~ 0.00031-,)) (14)

The two above formulas for LGD can be applied to predict LGD both for resolved and unresolved
cases. In other words, they can be used for performing cases and in-default cases with known the time
spent in default status until the LGD prediction is computed.

Tables 12 and 13 show the numeric results obtained from the SAS system based on the predicted
LGD for closed cases.

The first analysis is the correlation between the following predicted LGDs and LGD realized (see

Tables 12 and 13): LGD realized, LGD LGD LGD,yy raio = % and two predicted LGD
total

values from the binary models, i.e. LGD, = 0 and LGD; = 1. The analysis is divided into the resolved
and unresolved cases.

The above results give some interesting information:

— the total LGD prediction is mainly correlated with the prediction that LGD, = 1;

— both binary models predicting LGD, = 0 and LGD, = 1 are correlated at a lower level;

- the total LGD prediction is quite strongly correlated with the additional part of the loss
for the unresolved cases; the lower the additional part of the loss, the higher should be the total
predicted LGD.

The second analysis is to compare the basic statistic between the resolved and unresolved cases
(see Tables 14 and 15).

The summary of the above results is intuitive and can be detailed below:
= LGD realized is much higher for the unresolved than for resolved cases, which is natural as

recoveries are observed partially for the unresolved cases.
= The average of LGD, = 0 prediction is almost the same for the resolved and unresolved cases.
= The average of LGD, = 1 prediction is twice as high for the unresolved than for the resolved cases

and the total LGD is also much higher for the unresolved cases. It indicates the greater losses for
unresolved cases, which is also intuitive.
*  The additional future share of losses is around 80% of the observed partial LGD based on recoveries

up to the censored time .

*  Minimum and maximum values of LGDs without winsorization are within the range [0-1].

The last analysis is based on distributions for LGD realized, LGD,,, ,, LGD, = 0 estimator,

LGD, = 1 estimator and their comparison. It can be seen that ¢ distributions for the LGD,, have

total? add’
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a similar shape, but the distribution of the LGD, for unresolved cases appears to be univariate but for
resolved cases it is unimodal (see Figures 4 and 5).

The conclusion from Figures 6 and 7 is that the variance of the distribution for the total predicted
LGD is much higher for unresolved cases, but the observed LGD is concentrated close to 1 for unresolved
cases and closer to 0 for resolved ones.

4. Conclusions and future research

The most important conclusion from the paper is that the combination of the classic approach with the
Bayesian methodology is possible and gives intuitive results. In addition, it can be successfully applied
to small samples on the example of LGD estimation. Using two binary models to predict two LGD
modes close to 0 or 1, it is a good idea to include more information to predict the LGD and differentiate
the customer risk profile associated with these two groups. These two models were then established as
input parameters to the Bayesian model. The biggest challenge and the most important point in the
modelling procedure was the idea of using both resolved and unresolved cases in one LGD Bayesian
model. This helped to avoid a model bias as can be seen in the classical approach, where unresolved
cases are used for the later stage of the modelling step to adjust the final results. The approach of using
unresolved cases in one model with resolved ones can be compared in its concept to using reject cases
in the reject inference problem where the default status is unknown as well as future recoveries are
unknown here. Following this approach we can continue by focusing on:

- taking into account the other LGD distributions such as Beta distribution,

- extending the Bayesian methodology to informative priors, that can be discovered from data or
previous experiences,

- inclusion of the more explanatory information in the part of the model related to unresolved
cases,

- reducing the dimensionality of the Bayesian approach starting from the business assumptions
and model properties required from the business point of view.
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Appendix

Table 1

A. Ptak-Chmielewska, P. Kopciuszewski

The most frequently used formulas for LGD estimation

Author

Frye-Jacobs
(2012)

Frye (2000)

Pykhtin
(2003)

Tasche
(2004)

Giese
(2005)

Hillebrand
(2006)

Giese (2006)

Dillmann,
Trapp
(2004)

Description

The LGD function
connects the
conditionally expected
LGD rate (cLGD) to the
conditionally expected
default rate (cDR)

Recovery is a linear
function of the normal
risk factor associated to
the Vasicek distribution

Proposes
parameterization of
the amount, volatility,
and systematic risk of
a loan’s collateral and
infers the loan’s LGD

Assumes a connection
between LGD and the
systematic risk factor
at the loan level;

the idiosyncratic
influence

is integrated

Makes a direct
specification of the
functional form
linking cLGD to cDR

Introduces a second
systematic factor that
is integrated out to
produce cLGD given
cDR

Uses the beta
distribution on
systematic factor Y

The recovery rate is
modelled as a logit
transformation of a
normally distributed
random variable Y

[

—® |[cDR
g ELGD(1-v) ~, (1-ELGD)(1-v)

©

©[@'[eDR]~k]/ DR

— £ _py

o

W —exXp

©

Formula

k = LGDriskindex = (@~ [PD]- @' [EL])/\1- p

1—(y +aq(\/ﬁq>'l[cDR]—cD'l[PD])/\/E)

U —recovery mean, 0 — recovery SD, g — recovery sensitivity

ﬂ+oﬁy+022(1ﬁ2)]q> \/(%,:ZYOW
v =(0"[PD]-\1=p0"[cDR]) /o

u —log recovery mean, o — log recovery SD,
B —recovery correlation

D [\/rp @' [¢DR]- @' [PD]+1- pz]—1+PD

or® [z] BetaCDF”

v

1-a,(1-PD")"

ooCI>[a—%+%d)‘l[cDR]—b 1-d’x ¢[x]dx
- e e

N L)
Ji=p " \1-p

LGD ~ Beta(a(Y), B(Y))

I+exp(Y))

v

a,, a,, a; - values to be determined

PD
dz/cDR

ELGD - expected LGD, v = fraction of maximum variance of Beta
distribution

a, b — parameters of cLGD in second factor,
d - correlation of latent factors

Y =u+oNwX +oi-wW,, X~ N(0,1), W, ~N(0,1)

wly)- 22l
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Table 2
Comparison between the classic and currently proposed approaches

Classic approach Proposed approach

Population for The population to build the main LGD The population includes both resolved
model building model refers only to resolved cases. and unresolved cases with recoveries
Unresolved ones are used at a later stage  observed up till the moment of data
generation, but with additional
recoveries being estimated for
unresolved cases
Estimation The main model is built on the The first two binary regression estimate
procedure resolved cases and adjusted on the LGD =0 and LGD = 1 events are built.
entire population with both resolved Two estimators are used as input
and unresolved. Mostly unresolved variables in the Bayesian model.
are used only at the adjustment stage Only one model is built on the entire
after applying the dragging estimation population but a separate prediction
algorithm for them is estimated for unresolved cases
Table 3

Pros and cons for the classic and currently proposed approach

Approach

Classic

Proposed

Pros

Well-known, accepted procedures,
simple results
More real examples to benchmark

Population of the main model includes
all cases (resolved and unresolved)
Possibility of including external expert

Cons

The main model built on the population
is biased with excluding unresolved
cases

No possibility of including expert
knowledge or random distribution

of parameters

Additional assumptions for regression
models

More complicated procedure, subjective
assumptions on LGD distribution
More complex calculations for the

knowledge posterior parameters of a multivariate
A wide range of distributions for model or hierarchical model
parameters

No restrictions on the complexity
of the model
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Table 4
LGD =0 and LGD = 1 shares in the population of both all and the resolved cases from 2008 to 2018

o, The entire population Resolved cases only
of default Avg Avg Population Avg Avg Population
(LGD,;=0) (LGD;=1) size (LGD,=0) (LGD;=1) size
2008 0.055276 0.120603 199 0.055276 0.120603 199
2009 0.073171 0.209756 205 0.073171 0.209756 205
2010 0.048544 0.203883 103 0.048544 0.203883 103
2011 0.025000 0.166667 120 0.025641 0.162393 117
2012 0.059701 0.159204 201 0.063158 0.147368 190
2013 0.034335 0.171674 233 0.037037 0.162037 216
2014 0.064655 0.159483 232 0.072816 0.140777 206
2015 0.088542 0.182292 192 0.100592 0.142012 169
2016 0.085106 0.489362 141 0.151899 0.189873 79
2017 0.092857 0.614286 140 0.260000 0.000000 50
2018 0.059406 0.792079 101 0.315789 0.000000 19
Table 5

Model predicting LGD,= 0

Parameter Estimate PREINE
Intercept -2.9371 < 0.0001
The limit breach flag -0.8732 0.0008
Change of residence flag 3.689E-7 0.0318
The number of employment months -7.76E-7 0.0052
3 month savings 1.404E-6 0.0084
Ratio of 6 month savings to 3 month savings -1.07E-6 0.0453
Refinancing flag -2.6757 0.0003
Initial loan to value (LTV) -2.8906 < 0.0001
LTV dynamics (3 months to 6 months) 0.9741 0.0021
Past due amount dynamics (3 months to 6 months) 1.299E-6 0.0030
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Table 6
Description of variables for the model predicting LGD; = 0

Variable Description

Binary flag informing whether the customer has exceeded

Limit breach flag the limit

Binary flag informing whether the customer changed

Change of residence flag the residence

Number of employment months The number of employment months

3 months savings Savings from the last 3 months

Ratio of 6 month savings to 3 month The ratio of the last 6 month savings to the last 3 month
savings savings

Refinancing flag Binary flag informing about the refinancing the exposure
Initial loan to value (LTV) LTV calculated in the application process

Ratio of LTV calculated 3 months ago and LTV calculated

LTV dynamics (3 months to 6 months) 6 months ago

Past due amount dynamics (3 months Ratio of past due amount in the last 3 months and the last
to 6 months) 6 months
Table 7

Quality measures for the model predicting LGD, =1

Association of predicted probabilities and observed response

P concordant 77.6 Sommers’ D 0.552
Percent discordant 22.4 Gamma 0.552
Percent tied 0.0 Tau-a 0.065

Pairs 204 750 C 0.776
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Table 8
Model predicting LGD; = 1

Parameter Estimate Chi-‘/‘;?lll(llare Pr > ChiSq
Intercept -4.0969 159.5913 <0.0001
Cover value after Household Prices Index (HPI) -2.68E-6 16.2198 <0.0001
Outstanding dynamics (last 6 months) 9.43E-7 17.8508 < 0.0001
Industry (weight of evidence — WoE - grouped) 0.1252 123.4599 < 0.0001
Life insurance flag 0.8718 16.5867 <0.0001
LTV current 3.0650 102.2729 < 0.0001
Table 9

Description of variables for the model predicting LGD, =1

Variable Description

Cover value after HPI Collateral value index with HPI
Outstanding dynamics (last 6 months) Dynamics of outstanding for the last 6 months
Industry (WOE grouped) Customer industry transformed with WoE

Binary flag indicates whether the customer has life
insurance

LTV current Current LTV

Life insurance flag

Table 10
Quality measures for the model predicting LGD, = 1

Association of predicted probabilities and observed responses

Percent concordant 77.8 Somers’ D 0.557
Percent discordant 22.2 Gamma 0.557
Percent tied 0.0 Tau-a 0.215

Pairs 672060 C 0.77
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Table 11
Structure and statistics of the Bayesian model
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Parameter Estimate elafian DF T value p-value i) c?nﬁdence
error limits
a, 0.2751 0.01761 1867 15.62 < 0.0001 0.2405 0.3096
a, -0.5594 0.13770 1867 -4.06 < 0.0001 -0.8295 -0.2894
a, 0.5980 0.04388 1867 13.63 < 0.0001 0.5119 0.6841
sigma 0.1264 0.00414 1867 30.55 < 0.0001 0.1183 0.1346
b 0.00031 0.00002 1867 17.25 <0.0001 0.0003 0.0003
Table 12

Correlation of the predicted LGDs and realized LGD for resolved cases

Pearson correlation coefficients

LGD realized LGDl. =0 LGDi =1
LGD,,, 1.00000 -0.20301 0.21901 0.25277
LGD;=0 -0.20301 1.00000 -0.28360 -0.55562
LGD;=1 0.21901 -0.28360 1.00000 0.95488
LGD, ., 0.25277 -0.55562 0.95488 1.00000
Table 13

Correlation of the predicted LGDs and realized LGD for unresolved cases

Pearson correlation coefficients

re];lGi]z)ce 4 LGD=0 LGD=1  LGD,,  LGDu;  LGDyy e,
LGDobs 1.00000 -0.12036 0.46943 0.46485 -0.50372 -0.63900
LGDi =0 -0.12036 1.00000 -0.20827 -0.39593 -0.13966 0.13517
LGDi =1 0.46943 -0.20827 1.00000 0.98061 -0.44688 -0.68201
LGDtotal 0.46485 -0.39593 0.98061 1.00000 -0.39158 -0.66741
LGDadd -0.50372 -0.13966 -0.44688 -0.39158 1.00000 0.88434
LGD sy ot -0.63900 013517 -0.68201 -0.66741 0.88434  1.00000
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Table 14
Basic statistics for the predicted LGDs and realized LGD for resolved cases

Variable b Std Dev Minimum Maximum
LGD 1553 0.35315 0.38357 0.00036 1.85892
LGD; =0 1553 0.06197 0.06231 0.00034 0.48609
LGD;=1 1553 0.22457 0.16318 0.00116 0.95183
LGD, ., 1553 0.37473 0.11254 0.01379 0.84318
Table 15

Basic statistics for the predicted LGDs and realized LGD for unresolved cases

Variable : Std Dev Minimum Maximum
LGD 314 0.93789 0.11749 0.15706 1.17600
LGD;=0 314 0.06612 0.05701 0.00018 0.28415
LGD,=1 314 0.44026 0.24987 0.02943 0.96378
LGD,,,., 314 0.50139 0.15915 0.16294 0.83770
LGD,, 4, 314 0.33117 0.19006 0.11346 0.88722
LGD 444 ratio 314 0.80113 0.66583 0.15230 3.93828
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Figure 1
Diagram of LGD model building
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Figure 2
LGD =0 and LGD = 1 shares in the population of the resolved cases

0.35 - 250
0.30
=200
0.25
| 150 2
Z 020 8
2
=
0.15 100
0.10 |
= 50
0.05 |
0 T T T T T T T T T T 0
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year of default

s [ GD =0 e LGD =1 Count




646 A. Ptak-Chmielewska, P. Kopciuszewski

Figure 3
LGD =0 and LGD = 1 shares in the population of all cases
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Figure 4

Distribution of LGD; = 0 estimator divided into the resolved and unresolved cases
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Figure 5
Distribution of LGD; = 1 estimator divided into the resolved and unresolved cases
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Figure 6
Distribution of the total predicted LGD divided into the resolved and unresolved cases
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Figure 7
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Distribution of the realized LGD divided into the resolved and unresolved cases

RESOLVED

UNRESOLVED

%

80 -

70

60

50

40

30

20

Mean
Median
Std Deviation

0.353149
0.116658
0.383566

70

60

50

40

30

20 -

| Mean

Median
Std Deviation

0.937888
0.977311
0.117488

024 036 048 060 072

084 096
Igd_realized

1.08

1.20

132

T

1.44

T

1.56

T

168

T

1.80




Application of the Bayesian approach... 649

Zastosowanie podejscia bayesowskiego do modelowania strat
wynikajacych z niewykonania zobowigzania

Streszczenie

Zgodnie z zaawansowanym podejsciem w wewnetrznych ratingach (advanced internal rating based — AIRB)
banki moga samodzielnie wylicza¢ parametry ryzyka na podstawie wiasnych baz danych. Parametrami
tymi sa: prawdopodobieristwo niewykonania zobowigzania (probability of default — PD), ekspozycja
W momencie niewykonania zobowiazania (exposure at default - EAD) oraz strata wynikajaca z niewykonania
zobowiazania (loss given default — LGD). Podejscie do szacowania straty LGD, ktdre preferuja zaréwno
nadzorcy, jak i naukowcy, opiera si¢ na wielkosci odzyskéw zobowigzan kredytowych. W przypadku
niektdrych portfeli kredytowych, np. kredytéw zabezpieczonych hipotecznie, liczba obserwowanych zdarzen
niewykonania zobowiazania jest jednak zawsze ograniczona. W takiej sytuacji modele statystyczne nie beda
dziataty poprawnie. Oszacowania zawsze beda obcigzone ze wzgledu na mata liczebnie prébe danych.

Jest to szczegdlnie widoczne w przypadku szacowania strat kredytowych zgodnie z nowa definicja
niewykonania zobowiazania, gdy dostepne sa tylko mate préby danych empirycznych. Podstawowy
model estymacji LGD opiera si¢ na podziale odzyskéw na dwie klasy: wartosci bliskie 0 Iub wartosci
bliskie 1. Prowadzi to do skonstruowania modelu bedacego kombinacja dwdch modeli binarnych.
Kolejnym wyzwaniem w procesie estymacji LGD jest uwzglednienie przypadkéw niezakoriczonych
jeszcze proceséw odzysku.

Tradycyjne metody estymacji LGD nie uwzgledniaja podejscia bayesowskiego. Zazwyczaj
popularnym podejsciem jest regresja i modele taczone, takie jak regresja liniowa i logistyczna.
Celem tego badania jest wykorzystanie podejscia bayesowskiego uwzgledniajacego zatozenia
0 niezakoriczonych procesach odzysku. Podejscie bayesowskie jest uwzglednione do estymacji LGD
dla zakoriczonych przypadkéw odzysku w potaczeniu z dwoma modelami binarnymi. Zaleta badania
jest réwniez to, ze prezentuje proponowane podejscie do modelowania LGD na rzeczywistych danych
o portfelu kredytowym dla dtugiego okresu.

Proponowana metoda bierze pod uwage specyfike danych dla LGD zaréwno w przypadku
dwumodalnego rozkiadu, jak i niepewnosci wynikajacej z niezakoriczonych proceséw odzysku.
Prowadzi to do redukcji obcigzert modelu.

Najwazniejszym wnioskiem wynikajacym z badan jest to, ze potaczenie podejscia klasycznego
z metodologia bayesowska jest mozliwe i prowadzi do wynikéw zgodnych z intuicja. Dodatkowo takie
podejscie moze by¢ stosowane w przypadku matych liczebnie préb danych. Zastosowanie dwéch mo-
deli binarnych pozwala na wykorzystanie informacji o zr6znicowaniu ryzyka klientéw. Te dwa modele
binarne zostaty uzyte jako parametry a priori podejscia bayesowskiego. Najwigkszym wyzwaniem i jed-
noczesnie najwazniejszym punktem tej pracy byto jednak wykorzystanie zaréwno zakoriczonych, jak
i niezakoniczonych proceséw odzysku. W podejsciu klasycznym przypadki niezakoriczonych proceséw
odzysku s3 wykorzystywane na dalszych etapach modelowania do skorygowania finalnych wynikéw
estymacji. Podejscie bayesowskie pozwolito na redukcje obcigzenia modelu, ktére jest obserwowane
w podejsciu klasycznym.

Stowa kluczowe: mate proby, LGD, podejscie bayesowskie, regresja logistyczna i liniowa, niezakoriczo-
ny proces odzysku






